\(\int \frac {\sqrt {a+c x^2}}{(d+e x)^3} \, dx\) [531]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 19, antiderivative size = 103 \[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^3} \, dx=-\frac {(a e-c d x) \sqrt {a+c x^2}}{2 \left (c d^2+a e^2\right ) (d+e x)^2}-\frac {a c \text {arctanh}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{2 \left (c d^2+a e^2\right )^{3/2}} \]

[Out]

-1/2*a*c*arctanh((-c*d*x+a*e)/(a*e^2+c*d^2)^(1/2)/(c*x^2+a)^(1/2))/(a*e^2+c*d^2)^(3/2)-1/2*(-c*d*x+a*e)*(c*x^2
+a)^(1/2)/(a*e^2+c*d^2)/(e*x+d)^2

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.158, Rules used = {735, 739, 212} \[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^3} \, dx=-\frac {a c \text {arctanh}\left (\frac {a e-c d x}{\sqrt {a+c x^2} \sqrt {a e^2+c d^2}}\right )}{2 \left (a e^2+c d^2\right )^{3/2}}-\frac {\sqrt {a+c x^2} (a e-c d x)}{2 (d+e x)^2 \left (a e^2+c d^2\right )} \]

[In]

Int[Sqrt[a + c*x^2]/(d + e*x)^3,x]

[Out]

-1/2*((a*e - c*d*x)*Sqrt[a + c*x^2])/((c*d^2 + a*e^2)*(d + e*x)^2) - (a*c*ArcTanh[(a*e - c*d*x)/(Sqrt[c*d^2 +
a*e^2]*Sqrt[a + c*x^2])])/(2*(c*d^2 + a*e^2)^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 735

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(d + e*x)^(m + 1))*(-2*a*e + (2*c
*d)*x)*((a + c*x^2)^p/(2*(m + 1)*(c*d^2 + a*e^2))), x] - Dist[4*a*c*(p/(2*(m + 1)*(c*d^2 + a*e^2))), Int[(d +
e*x)^(m + 2)*(a + c*x^2)^(p - 1), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && EqQ[m + 2*p + 2
, 0] && GtQ[p, 0]

Rule 739

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rubi steps \begin{align*} \text {integral}& = -\frac {(a e-c d x) \sqrt {a+c x^2}}{2 \left (c d^2+a e^2\right ) (d+e x)^2}+\frac {(a c) \int \frac {1}{(d+e x) \sqrt {a+c x^2}} \, dx}{2 \left (c d^2+a e^2\right )} \\ & = -\frac {(a e-c d x) \sqrt {a+c x^2}}{2 \left (c d^2+a e^2\right ) (d+e x)^2}-\frac {(a c) \text {Subst}\left (\int \frac {1}{c d^2+a e^2-x^2} \, dx,x,\frac {a e-c d x}{\sqrt {a+c x^2}}\right )}{2 \left (c d^2+a e^2\right )} \\ & = -\frac {(a e-c d x) \sqrt {a+c x^2}}{2 \left (c d^2+a e^2\right ) (d+e x)^2}-\frac {a c \tanh ^{-1}\left (\frac {a e-c d x}{\sqrt {c d^2+a e^2} \sqrt {a+c x^2}}\right )}{2 \left (c d^2+a e^2\right )^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.92 (sec) , antiderivative size = 110, normalized size of antiderivative = 1.07 \[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^3} \, dx=\frac {(-a e+c d x) \sqrt {a+c x^2}}{2 \left (c d^2+a e^2\right ) (d+e x)^2}+\frac {a c \arctan \left (\frac {\sqrt {c} (d+e x)-e \sqrt {a+c x^2}}{\sqrt {-c d^2-a e^2}}\right )}{\left (-c d^2-a e^2\right )^{3/2}} \]

[In]

Integrate[Sqrt[a + c*x^2]/(d + e*x)^3,x]

[Out]

((-(a*e) + c*d*x)*Sqrt[a + c*x^2])/(2*(c*d^2 + a*e^2)*(d + e*x)^2) + (a*c*ArcTan[(Sqrt[c]*(d + e*x) - e*Sqrt[a
 + c*x^2])/Sqrt[-(c*d^2) - a*e^2]])/(-(c*d^2) - a*e^2)^(3/2)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(899\) vs. \(2(91)=182\).

Time = 2.18 (sec) , antiderivative size = 900, normalized size of antiderivative = 8.74

method result size
default \(\frac {-\frac {e^{2} \left (c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}\right )^{\frac {3}{2}}}{2 \left (e^{2} a +c \,d^{2}\right ) \left (x +\frac {d}{e}\right )^{2}}+\frac {c d e \left (-\frac {e^{2} \left (c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}\right )^{\frac {3}{2}}}{\left (e^{2} a +c \,d^{2}\right ) \left (x +\frac {d}{e}\right )}-\frac {c d e \left (\sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}-\frac {\sqrt {c}\, d \ln \left (\frac {-\frac {c d}{e}+c \left (x +\frac {d}{e}\right )}{\sqrt {c}}+\sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}\right )}{e}-\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {2 e^{2} a +2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{e^{2} \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}}\right )}{e^{2} a +c \,d^{2}}+\frac {2 c \,e^{2} \left (\frac {\left (2 c \left (x +\frac {d}{e}\right )-\frac {2 c d}{e}\right ) \sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{4 c}+\frac {\left (\frac {4 c \left (e^{2} a +c \,d^{2}\right )}{e^{2}}-\frac {4 c^{2} d^{2}}{e^{2}}\right ) \ln \left (\frac {-\frac {c d}{e}+c \left (x +\frac {d}{e}\right )}{\sqrt {c}}+\sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}\right )}{8 c^{\frac {3}{2}}}\right )}{e^{2} a +c \,d^{2}}\right )}{2 e^{2} a +2 c \,d^{2}}+\frac {c \,e^{2} \left (\sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}-\frac {\sqrt {c}\, d \ln \left (\frac {-\frac {c d}{e}+c \left (x +\frac {d}{e}\right )}{\sqrt {c}}+\sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}\right )}{e}-\frac {\left (e^{2} a +c \,d^{2}\right ) \ln \left (\frac {\frac {2 e^{2} a +2 c \,d^{2}}{e^{2}}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+2 \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}\, \sqrt {c \left (x +\frac {d}{e}\right )^{2}-\frac {2 c d \left (x +\frac {d}{e}\right )}{e}+\frac {e^{2} a +c \,d^{2}}{e^{2}}}}{x +\frac {d}{e}}\right )}{e^{2} \sqrt {\frac {e^{2} a +c \,d^{2}}{e^{2}}}}\right )}{2 e^{2} a +2 c \,d^{2}}}{e^{3}}\) \(900\)

[In]

int((c*x^2+a)^(1/2)/(e*x+d)^3,x,method=_RETURNVERBOSE)

[Out]

1/e^3*(-1/2/(a*e^2+c*d^2)*e^2/(x+d/e)^2*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(3/2)+1/2*c*d*e/(a*e^2
+c*d^2)*(-1/(a*e^2+c*d^2)*e^2/(x+d/e)*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(3/2)-c*d*e/(a*e^2+c*d^2
)*((c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2)-c^(1/2)*d/e*ln((-c*d/e+c*(x+d/e))/c^(1/2)+(c*(x+d/e)^
2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2))-(a*e^2+c*d^2)/e^2/((a*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^
2-2*c*d/e*(x+d/e)+2*((a*e^2+c*d^2)/e^2)^(1/2)*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e)))
+2*c/(a*e^2+c*d^2)*e^2*(1/4*(2*c*(x+d/e)-2*c*d/e)/c*(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2)+1/8*
(4*c*(a*e^2+c*d^2)/e^2-4*c^2*d^2/e^2)/c^(3/2)*ln((-c*d/e+c*(x+d/e))/c^(1/2)+(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^
2+c*d^2)/e^2)^(1/2))))+1/2*c/(a*e^2+c*d^2)*e^2*((c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2)-c^(1/2)*
d/e*ln((-c*d/e+c*(x+d/e))/c^(1/2)+(c*(x+d/e)^2-2*c*d/e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2))-(a*e^2+c*d^2)/e^2/((a
*e^2+c*d^2)/e^2)^(1/2)*ln((2*(a*e^2+c*d^2)/e^2-2*c*d/e*(x+d/e)+2*((a*e^2+c*d^2)/e^2)^(1/2)*(c*(x+d/e)^2-2*c*d/
e*(x+d/e)+(a*e^2+c*d^2)/e^2)^(1/2))/(x+d/e))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 246 vs. \(2 (92) = 184\).

Time = 0.58 (sec) , antiderivative size = 519, normalized size of antiderivative = 5.04 \[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^3} \, dx=\left [\frac {{\left (a c e^{2} x^{2} + 2 \, a c d e x + a c d^{2}\right )} \sqrt {c d^{2} + a e^{2}} \log \left (\frac {2 \, a c d e x - a c d^{2} - 2 \, a^{2} e^{2} - {\left (2 \, c^{2} d^{2} + a c e^{2}\right )} x^{2} - 2 \, \sqrt {c d^{2} + a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{e^{2} x^{2} + 2 \, d e x + d^{2}}\right ) - 2 \, {\left (a c d^{2} e + a^{2} e^{3} - {\left (c^{2} d^{3} + a c d e^{2}\right )} x\right )} \sqrt {c x^{2} + a}}{4 \, {\left (c^{2} d^{6} + 2 \, a c d^{4} e^{2} + a^{2} d^{2} e^{4} + {\left (c^{2} d^{4} e^{2} + 2 \, a c d^{2} e^{4} + a^{2} e^{6}\right )} x^{2} + 2 \, {\left (c^{2} d^{5} e + 2 \, a c d^{3} e^{3} + a^{2} d e^{5}\right )} x\right )}}, -\frac {{\left (a c e^{2} x^{2} + 2 \, a c d e x + a c d^{2}\right )} \sqrt {-c d^{2} - a e^{2}} \arctan \left (\frac {\sqrt {-c d^{2} - a e^{2}} {\left (c d x - a e\right )} \sqrt {c x^{2} + a}}{a c d^{2} + a^{2} e^{2} + {\left (c^{2} d^{2} + a c e^{2}\right )} x^{2}}\right ) + {\left (a c d^{2} e + a^{2} e^{3} - {\left (c^{2} d^{3} + a c d e^{2}\right )} x\right )} \sqrt {c x^{2} + a}}{2 \, {\left (c^{2} d^{6} + 2 \, a c d^{4} e^{2} + a^{2} d^{2} e^{4} + {\left (c^{2} d^{4} e^{2} + 2 \, a c d^{2} e^{4} + a^{2} e^{6}\right )} x^{2} + 2 \, {\left (c^{2} d^{5} e + 2 \, a c d^{3} e^{3} + a^{2} d e^{5}\right )} x\right )}}\right ] \]

[In]

integrate((c*x^2+a)^(1/2)/(e*x+d)^3,x, algorithm="fricas")

[Out]

[1/4*((a*c*e^2*x^2 + 2*a*c*d*e*x + a*c*d^2)*sqrt(c*d^2 + a*e^2)*log((2*a*c*d*e*x - a*c*d^2 - 2*a^2*e^2 - (2*c^
2*d^2 + a*c*e^2)*x^2 - 2*sqrt(c*d^2 + a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a))/(e^2*x^2 + 2*d*e*x + d^2)) - 2*(a*
c*d^2*e + a^2*e^3 - (c^2*d^3 + a*c*d*e^2)*x)*sqrt(c*x^2 + a))/(c^2*d^6 + 2*a*c*d^4*e^2 + a^2*d^2*e^4 + (c^2*d^
4*e^2 + 2*a*c*d^2*e^4 + a^2*e^6)*x^2 + 2*(c^2*d^5*e + 2*a*c*d^3*e^3 + a^2*d*e^5)*x), -1/2*((a*c*e^2*x^2 + 2*a*
c*d*e*x + a*c*d^2)*sqrt(-c*d^2 - a*e^2)*arctan(sqrt(-c*d^2 - a*e^2)*(c*d*x - a*e)*sqrt(c*x^2 + a)/(a*c*d^2 + a
^2*e^2 + (c^2*d^2 + a*c*e^2)*x^2)) + (a*c*d^2*e + a^2*e^3 - (c^2*d^3 + a*c*d*e^2)*x)*sqrt(c*x^2 + a))/(c^2*d^6
 + 2*a*c*d^4*e^2 + a^2*d^2*e^4 + (c^2*d^4*e^2 + 2*a*c*d^2*e^4 + a^2*e^6)*x^2 + 2*(c^2*d^5*e + 2*a*c*d^3*e^3 +
a^2*d*e^5)*x)]

Sympy [F]

\[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^3} \, dx=\int \frac {\sqrt {a + c x^{2}}}{\left (d + e x\right )^{3}}\, dx \]

[In]

integrate((c*x**2+a)**(1/2)/(e*x+d)**3,x)

[Out]

Integral(sqrt(a + c*x**2)/(d + e*x)**3, x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^3} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((c*x^2+a)^(1/2)/(e*x+d)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(e>0)', see `assume?` for more
details)Is e

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 316 vs. \(2 (92) = 184\).

Time = 0.30 (sec) , antiderivative size = 316, normalized size of antiderivative = 3.07 \[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^3} \, dx=-\frac {a c \arctan \left (\frac {{\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} e + \sqrt {c} d}{\sqrt {-c d^{2} - a e^{2}}}\right )}{{\left (c d^{2} + a e^{2}\right )} \sqrt {-c d^{2} - a e^{2}}} + \frac {2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{3} c^{2} d^{2} e + {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{3} a c e^{3} + 2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{2} c^{\frac {5}{2}} d^{3} - {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{2} a c^{\frac {3}{2}} d e^{2} - 2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} a c^{2} d^{2} e + {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} a^{2} c e^{3} + a^{2} c^{\frac {3}{2}} d e^{2}}{{\left (c d^{2} e^{2} + a e^{4}\right )} {\left ({\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )}^{2} e + 2 \, {\left (\sqrt {c} x - \sqrt {c x^{2} + a}\right )} \sqrt {c} d - a e\right )}^{2}} \]

[In]

integrate((c*x^2+a)^(1/2)/(e*x+d)^3,x, algorithm="giac")

[Out]

-a*c*arctan(((sqrt(c)*x - sqrt(c*x^2 + a))*e + sqrt(c)*d)/sqrt(-c*d^2 - a*e^2))/((c*d^2 + a*e^2)*sqrt(-c*d^2 -
 a*e^2)) + (2*(sqrt(c)*x - sqrt(c*x^2 + a))^3*c^2*d^2*e + (sqrt(c)*x - sqrt(c*x^2 + a))^3*a*c*e^3 + 2*(sqrt(c)
*x - sqrt(c*x^2 + a))^2*c^(5/2)*d^3 - (sqrt(c)*x - sqrt(c*x^2 + a))^2*a*c^(3/2)*d*e^2 - 2*(sqrt(c)*x - sqrt(c*
x^2 + a))*a*c^2*d^2*e + (sqrt(c)*x - sqrt(c*x^2 + a))*a^2*c*e^3 + a^2*c^(3/2)*d*e^2)/((c*d^2*e^2 + a*e^4)*((sq
rt(c)*x - sqrt(c*x^2 + a))^2*e + 2*(sqrt(c)*x - sqrt(c*x^2 + a))*sqrt(c)*d - a*e)^2)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+c x^2}}{(d+e x)^3} \, dx=\int \frac {\sqrt {c\,x^2+a}}{{\left (d+e\,x\right )}^3} \,d x \]

[In]

int((a + c*x^2)^(1/2)/(d + e*x)^3,x)

[Out]

int((a + c*x^2)^(1/2)/(d + e*x)^3, x)